1.

`int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx` equal toA. `-cot(ex^(x))+C`B. `tan(xe^(x))+C`C. `tan(e^(x))+C`D. `cot(e^(x))+C`

Answer» Correct Answer - B
`int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx`
Let`" "xe^(x)=t`
`rArr" "(xe^(x)+e^(x))=(dt)/(dx) rArr dx=(dt)/(e^(x)(x+1))`
`therefore int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx=int(e^(x)(1+x))/(cos^(2)t)xx(dt)/(e^(x)(1+x))`
`=int(1)/(cos^(2)t)dt=intsec^(2)tdt`
`=tant +C tan(xe^(x))+C`


Discussion

No Comment Found