1.

`int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx` is equal toA. `e^(x)+C`B. `(1)/(2)(e^(x)-e^(-x))^(2)+C`C. `(1)/(2)(e^(x)+e^(-x))^(2)+C`D. `(1)/(3)(e^(x)+e^(-x))^(3)+C`

Answer» Correct Answer - D
Let `l=int(e^(x)+e^(-x))^(2).(e^(x)-e^(-x))dx`
Put `e^(x)+e^(-x)=t rArr (e^(x)-e^(-x))dx=dt`
`therefore" "l=int t^(2)dt=(t^(3))/(3)+C=((e^(x)+e^(-x))^(3))/(3)+C`


Discussion

No Comment Found