1.

`int("In"((x-1)/(x+1)))/(x^(2)-1)dx` is equal toA. `(1)/(2)("In"((x-1)/(x+1)))^(2)+C`B. `(1)/(2)("In"((x+1)/(x-1)))^(2)+C`C. `(1)/(4)("In"((x-1)/(x+1)))^(2)+C`D. `(1)/(4)("In"((x+1)/(x-1)))`

Answer» Correct Answer - C
`I=int("In"((x-1)/(x+1)))/(x^(2)-1)dx`
Let `t="In"((x-1)/(x+1))`
or `(dt)/(dx)=(x+1)/(x-1){(x+1-(x-1))/((x+1)^(2))}=(2)/((x^(2)-1))`
or `(dx)/(x^(2)-1)=(dt)/(2)`
` :. I=(1)/(2)int t dt=(1)/(4)t^(2)+C=(1)/(4)("In"((x-1)/(x+1)))^(2)+C`


Discussion

No Comment Found

Related InterviewSolutions