InterviewSolution
Saved Bookmarks
| 1. |
`int("In"((x-1)/(x+1)))/(x^(2)-1)dx` is equal toA. `(1)/(2)("In"((x-1)/(x+1)))^(2)+C`B. `(1)/(2)("In"((x+1)/(x-1)))^(2)+C`C. `(1)/(4)("In"((x-1)/(x+1)))^(2)+C`D. `(1)/(4)("In"((x+1)/(x-1)))` |
|
Answer» Correct Answer - C `I=int("In"((x-1)/(x+1)))/(x^(2)-1)dx` Let `t="In"((x-1)/(x+1))` or `(dt)/(dx)=(x+1)/(x-1){(x+1-(x-1))/((x+1)^(2))}=(2)/((x^(2)-1))` or `(dx)/(x^(2)-1)=(dt)/(2)` ` :. I=(1)/(2)int t dt=(1)/(4)t^(2)+C=(1)/(4)("In"((x-1)/(x+1)))^(2)+C` |
|