1.

`int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C`, thenA. `f(x)=log(logx),g (x)=(1)/(logx)`B. `f(x)=logx,g(x)=(1)/(logx)`C. `f(x)=(1)/(logx),(x)=log(logx)`D. `f(x)=(1)/(xlogx),g(x)=(1)/(logx)`

Answer» Correct Answer - a
We have , `I=int{log(logx)+(1)/((logx)^(2))}dx`
`rArr I= inte^(t)(logt+(1)/(t^(2)))dt`,where t = log x
`rArrI=inte^(t)(logt+(1)/(t))dt+inte^(t)(-(1)/(t)+(1)/(t^(2)))dt`
`rArrI=e^(t)logt +e^(t)(-(1)/(t))+C`
`rArrI=x(log(logx)-(1)/(logx))+C`
`:. f(x) =logx and g(x) = (1)/(logx)`


Discussion

No Comment Found

Related InterviewSolutions