InterviewSolution
Saved Bookmarks
| 1. |
`int(logsqrtx)/(3sqrtx)dx` is equal toA. `(1)/(3)(log sqrtx)^(2)+C`B. `(2)/(2)(log sqrtx)^(2)+C`C. `(2)/(3)(logx)^(2)+C`D. `(1)/(3)(logx)^(2)+C` |
|
Answer» Correct Answer - A Let `l=int(logsqrtx)/(3x)dx` Put`" "sqrtx=t` `(1)/(sqrtx)dx=2dt` `therefore" "l=int(2logt)/(3t)dt=(2)/(3)int(logt)/(t)dt` Again, put `log t = mu rArr (1)/(t)dt= d mu` `therefore" "l=(2)/(3)int mu d mu=(2)/(3)(mu^(2))/(2)+C` `=(2)/(3).((logt)^(2))/(2)+C=(1)/(3)(log sqrtx)^(2)+C` |
|