1.

\( \int_{\pi}^{0} \frac{\sqrt{x^{2}+1}\left(\log \left(x^{2}+1\right)-2 \log x\right)}{x^{4}} d x \)

Answer»

Let I = \(\int\cfrac{\sqrt{x^2+1}(log(x^2+1)-2 log x)}{x^4}dx\) 

\(=\int\cfrac{x\sqrt{1+\frac1{x^2}}log(\frac{x^2+1}{x^2})}{x^4}dx\) 

(\(\because\) 2log x = log x2 and log(x2 + 1) - 2logx = log(x2 + 1) - logx2 = log(\(\frac{x^2+1}{x^2}\)))

\(=\int\cfrac{\sqrt{1+\frac1{x^2}}log(1+\frac1{x^2})}{x^3}dx\) 

Let 1 + \(\frac1{x^2}\) = t

⇒ \(\frac{-2}{x^3}dx = dt\) 

⇒ \(\frac{dx}{x^3} = -\frac{dt}2\) 

\(\therefore\)  I = \(-\frac12\int\sqrt t\) log t dt

\(=-\frac12[log t\int \sqrt t dt-\int(\frac{d}{dt}log t\int\sqrt t dt)dt]\) 

\(=-\frac12[\frac23log t t^{3/2}- \int\frac1t\times\frac23t^{3/2}dt]\) 

\(=-\frac12[\frac23t^{3/2}log t - \frac23\int t^{1/2}dt]\) 

\(= -\frac12(\frac23t^{3/2}log t - \frac23\times\frac23t^{3/2})\) 

\(=-\frac12[\frac23(1+\frac1{x^2})^{3/2}log(1+\frac1{x^2}-\frac49(1+\frac1{x^2})^{3/2}]\)

(By putting t = 1 + \(\frac1{x^2}\))



Discussion

No Comment Found

Related InterviewSolutions