1.

`int_(-pi//2)^(pi//2)sin^(2)xdx`A. `pi/2`B. `pi/4`C. `pi/2-1/4`D. `pi/4-1/2`

Answer» Correct Answer - A

Let I = \(\int\limits^\frac{\pi}{2}_{-\frac{\pi}{2}}\)

\(\because\) sin2(-x) = (-sin x)2 = sin2x

\(\therefore\) I = 2 \(\int\limits^{\frac{\pi}2}_0\)  sin2x dx

\(\cfrac{2\,\Gamma(\frac{2+1}{2})\,\Gamma(\frac{0+1}{2})}{2\,\Gamma\,(\frac{2+0+2}{2})}\)

\(\cfrac{\Gamma(\frac32)\,\Gamma(\frac12)}{\Gamma(2)}\)

\(\cfrac{\frac12\,\Gamma(\frac12)\,\Gamma(\frac12)}{1!}\)     (\(\because\Gamma(\frac32) = \frac12\Gamma(\frac12)\))

\(\frac12\sqrt{\pi}.\sqrt{\pi}\)           (\(\because\Gamma(\frac12)= \sqrt{\pi}\))

\(\frac{\pi}2\)



Discussion

No Comment Found