1.

`int sqrt((a+x)/(a-x))` का मान ज्ञात कीजिए ।

Answer» `int sqrt((a+x)/(a-x))dx=intsqrt(((a+x)(a+x))/((a-x)(a+x)))dx`
`" "=int(a+x)/(sqrt(a^(2)-x^(2)))`
`=int(a)/(sqrt(a^(2)-x^(2)))dx+int(x)/(sqrt(a^(2)-x^(2)))dx` माना `a^(2)-x^(2)=t`
`=a int(1)/(sqrt(a^(2)-x^(2)))dx+int(dt)/(-2sqrtt)" "{:(rArr" "-2x=(dt)/(dx)),(rArr" "xdx=(dt)/(dx)):}`
`" "=a.sin^(-1).(x)/(a)-(1)/(2).2sqrtt+c`
`" "=asin^(-1).(x)/(a)-sqrt(a^(2)-x^(2))+c`


Discussion

No Comment Found