1.

`int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=`A. `(1)/(4) log_(e)|(1-sqrt(1-x^(4)))/(1+sqrt(1-x^(4)))|+(1)/(2)sin^(-1)(x^(2))+C`B. `(1)/(2) log_(e)|(1-sqrt(1-x^(4)))/(1+sqrt(1-x^(4)))|+(1)/(2)cos^(-1)(x^(2))+C`C. `(1)/(2) log_(e)|(1-sqrt(1-x^(4)))/(1+sqrt(1-x^(4)))|+sin^(-1)(x^(2))+C`D. ` log_(e)|(1-sqrt(1-x^(4)))/(1+sqrt(1-x^(4)))|+(1)/(2)cos^(-1)(x^(2))+C`

Answer» Correct Answer - A
`int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=int sqrt((1+x^(2))/(x^(2)(1-x^(2)))) xx(sqrt(1+x^(2)))/(sqrt(1+x^(2)))dx`
`=int(1+x^(2))/(xsqrt(1-x^(4)))dx`
`=int(1)/(xsqrt(1-x^(4)))dx+int (x)/(sqrt(1-x^(4)))dx`
`=(1)/(4) log_(e)|(1-sqrt(1-x^(4)))/(1+sqrt(1-x^(4)))|+(1)/(2)sin^(-1)(x^(2))+c`


Discussion

No Comment Found

Related InterviewSolutions