1.

`int(x-1)/((x+1)(x^(2)+1))dx` का मान ज्ञात कीजिए ।

Answer» माना `(x-1)/((x+1)(x^(2)+1))`
`" "=(A)/(x+1)+(Bx+C)/(x^(2)+1)`
`" "=(A(x^(2)+1)+(Bx+C)(x+1))/((x+1)(x^(2)+1))`
`rArr" "A(x^(2)+1)+(Bx+C)(x+1)=x-1`
समान घातों के गुणांकों की तुलना करने पर
`A+B=0`
`B+C=1`
`A+C=-1`
हल करने पर `A=-1,B=1, C=0`
`therefore int(x-1)/((x+1)(x^(2)+1))dx=int(-1)/(x+1)dx+int(x)/(x^(2)+1)dx`
`=int(-1)/(x+1)dx+(1)/(2) int (2x)/(x^(2)+1)dx`
`=-log|x+1|+(1)/(2)log|x^(2)+1|+c`


Discussion

No Comment Found