

InterviewSolution
Saved Bookmarks
1. |
`int x^2(ax + b)^-2 dx` is equal toA. `(2)/(a^(2))(x-(b)/(a)log(ax+b))+C`B. `(2)/(a^(2))(x-(b)/(a)log(ax+b))-(x^(2))/(a(ax+b))+C`C. `(2)/(a^(2))(x+(b)/(a)log(ax+b))+(x^(2))/(a(ax+b))+C`D. `(2)/(a^(2))(x+(b)/(a)log(ax+b))-(x^(2))/(a(ax+b))+C` |
Answer» Correct Answer - B Let `l=int(x^(2))/((ax+b)^(2))dx` Put `ax+b=t rArr dx=(1)/(a)dt` and `" "x=((t-b)/(a))` `therefore" "l=(1)/(a^(3))int((t-b)^(2))/(t^(2))dt=(1)/(a^(3))int(1+(b^(2))/(t^(2))-(2b)/(t))dt` `=(1)/(a^(3))(t-(b^(2))/(t)-2b log t)+C` `=(1)/(a^(3))[ax+b-(b^(2))/(ax+b)-2blog(ax+b)]+C` `=(1)/(a^(3))[(a^(2)x^(2)+b^(2)+2axb-b^(2))/((ax+b))-(a^(2)x^(2))/(ax+b)-2b log(ax+b)]+C` `=(1)/(a^(3))[2ax-(a^(2)x^(2))/(ax+b)-2blog(ax+b)]+C` `=(2)/(a^(2))[x-(b)/(a)log(ax+b)]-(x^(2))/(a(ax+b))+C` |
|