

InterviewSolution
Saved Bookmarks
1. |
`int ((x+2)/(x+4))^2 e^x dx` is equal toA. `e^(x)((x)/(x+4))+C`B. `e^(x)((x+2)/(x+4))+C`C. `e^(x)((x-2)/(x+4))+C`D. `((2xe^(x))/(x+4))+C` |
Answer» Correct Answer - A Let `l=int((x+2)/(x+4))^(2)e^(x)dx=inte^(x)[(x^(2)+4+4x)/((x+4)^(2))]dx` `rArr" "l=int e^(x)[(x(x+4))/((x+4)^(2))+(4)/((x+4)^(2))]dx` `rArr" "l=int (e^(x)x)/(x+4)dx+int(4e^(x))/((x+4)^(2))dx` On using integration by parts, we get `rArr" "l=e^(x)((x)/(x+4))-int(4e^(x))/((x+4)^(2))dx+int(4e^(x))/((x+4)^(2))dx` `rArr" "l=(xe^(x))/((x+4))+C` |
|