1.

`int ((x+2)/(x+4))^2 e^x dx` is equal toA. `e^(x)((x)/(x+4))+C`B. `e^(x)((x+2)/(x+4))+C`C. `e^(x)((x-2)/(x+4))+C`D. `((2xe^(x))/(x+4))+C`

Answer» Correct Answer - A
Let `l=int((x+2)/(x+4))^(2)e^(x)dx=inte^(x)[(x^(2)+4+4x)/((x+4)^(2))]dx`
`rArr" "l=int e^(x)[(x(x+4))/((x+4)^(2))+(4)/((x+4)^(2))]dx`
`rArr" "l=int (e^(x)x)/(x+4)dx+int(4e^(x))/((x+4)^(2))dx`
On using integration by parts, we get
`rArr" "l=e^(x)((x)/(x+4))-int(4e^(x))/((x+4)^(2))dx+int(4e^(x))/((x+4)^(2))dx`
`rArr" "l=(xe^(x))/((x+4))+C`


Discussion

No Comment Found