InterviewSolution
Saved Bookmarks
| 1. |
`int(x^(2))/((x sinx+cosx)^(2))dx` is equal toA. `(sin x+cos x)/(xsin x+cos x)+C`B. `(x sin x-cos x)/(x sin x+cos x)+C`C. `(sin x-x cos x)/(x sin x+cos c)+C`D. None of these |
|
Answer» Correct Answer - C Since, `(d)/(dx)(x sin x+cos x)=x cos x` `therefore I =int (x^(2)dx)/((xsin x+cos x)^(2))` `=int (x)/(cos x).(x cos x)/(cos x(x sin x+cos x)^(2))dx` `=(x)/(cos x)((-1)/(x sin x+cos x))` `-int(cos x-x(-sin x))/(cos ^(2)x)*(-1)/((x sin x+cos x))dx` `=(-x)/(cos x(x sin x+cos x))+int sec^(2)dx` `=(-x)/(cos x(xsin x+cos x))+tan x+C` `=(-x+sin x(x sin x+cos x))/(cos x(x sin x+c os x))+C` `=(-xcos ^(2)x+sin x*c os x)/(cos x(x sin x+cos x))+C` `=((sin x-xcos x)/(cos x+xsin x))+C` |
|