InterviewSolution
Saved Bookmarks
| 1. |
The differential equation whose solution is `(x-h)^2+ (y-k)^2=a^2` is (a is a constant)A. `[1+((dy)/(dx))^(2)]^(3)=a^(2)(d^(2)y)/(dx^(2))`B. `[1+((dy)/(dx))^(2)]^(3)=a^(2)((d^(2)y)/(dx^(2)))^(2)`C. `[1+((dy)/(dx))]^(3)=a^(2)((d^(2)y)/(dx^(2)))^(2)`D. None of the above |
|
Answer» Correct Answer - B Given, `(x-h)^(2)+(y-k)^(2)=a^(2)" (i)"` `implies2(x-h)+2(y-k)(dy)/(dx)=0` `implies(x-h)+(y-k)(dy)/(dx)=0" "...(ii)` Again differentiating `(y-k)=-(1+((dy)/(dx))^(2))/(d^(2)y//dx^(2))` Putting in Eq. (ii), we get `x-h =-(y-k)(dy)/(dx)=([1+((dy)/(dx))^(2)](dy)/(dx))/((d^(2)y)/(dx^(2)))` Putting in Eq. (i), we get `([1+((dy)/(dx))^(2)]^(2)((dy)/(dx))^(2))/(((d^(2)y)/(dx^(2)))^(2))+([1+((dy)/(dx))^(2)]^(2))/(((d^(2)y)/(dx^(2)))^(2))=a^(2)` `implies[1+((dy)/(dx))^(2)]^(2)[((dy)/(dx))^(2)+1]=a^(2)((d^(2)y)/(dx^(2)))^(2)` `implies[1+((dy)/(dx))^(2)]^(3)=a^(2)((d^(2)y)/(dx^(2)))^(2)` |
|