1.

`int(x^(3)-1)^(1//3)x^(5)dx` is equal toA. `(1)/(7)(x^(3)+1)^(1//3)+(1)/(4)(x^(3)-1)^(3//4)+C`B. `(1)/(7)(x^(3)-1)^(7//3)+(1)/(4)(x^(3)-1)^(4//3)+C`C. `(3)/(7)(x^(3)-1)^(7//3)+(1)/(4)(x^(3)-1)^(4//3)+C`D. None of the above

Answer» Correct Answer - B
`int(x^(3)-1)^(1//3)x^(5)dx=int(x^(3)-1)^(1//3)x^(3).x^(2)dx`
Let `x^(3)-1=t rArr x^(3)=t+1`
Differentiating w.r.t. x, we get `3x^(2)=(dt)/(dx) rArr dx=(dt)/(3x^(2))`
`therefore" "intx^(3)-1^(1//3)x^(3).x^(2)dx=intt^(1//3)(t+1)x^(2)(dt)/(3x^(2))`
`=(1)/(3)int(t^(4//3)+t^(1//3))dt`
`=(1)/(3)[(t^(7//3))/((7)/(3))+(t^(4//3))/((4)/(3))]+C=(1)/(3)[(3)/(7)t^(7//5)+(3)/(4)t^(4//3)]+C`
`=(1)/(7)t^(7//3)+(1)/(4)t^(4//3)+C`
`=(1)/(7)(x^(3)-1)^(7//3)+(1)/(4)(x^(3)-1)^(4//3)+C`


Discussion

No Comment Found