InterviewSolution
Saved Bookmarks
| 1. |
`int(x^(4)+1)/(x^(6)+1)dx` का मान ज्ञात कीजिए । |
|
Answer» माना `I=int(x^(4)+1)/(x^(6)+1)dx` `" "=int((x^(4)-x^(2)+1)+x^(2))/(x^(6)+1)dx` `" "=int(x^(4)-x^(2)+1)/(x^(6)+1)dx+int(x^(2))/(x^(6)+1)dx` `" "=int(x^(4)-x^(2)+1)/((x^(2)+1)(x^(4)-x^(2)+1))dx+int(x^(2))/(x^(6)+1)dx` `rArr" "I=int(1)/(x^(2)+1)dx+int(x^(2))/(x^(6)+1)dx` माना `" "x^(3)=t` `rArr" "3x^(2)dx=dt` `rArr" "x^(2)dx=(dt)/(3)` `therefore" "I=int(1)/(x^(2)+1)dx+int(dt)/(3(t^(2)-1))` `" "=tan^(-1)x+(1)/(3)tan^(-1)t+c` `" "=tan^(-1)x+(1)/(3)tan^(-1)x^(2)+c` |
|