

InterviewSolution
Saved Bookmarks
1. |
`inte^(-x)(1-tanx)secx dx` is equal toA. `e^(x)cos x+C`B. `e^(x)sec x+C`C. `e^(x)sinx+C`D. `e^(x)tanx+C` |
Answer» Correct Answer - B Let`" "l=int e^(x) sec x (1+tanx)dx` `rArr" "l=int e^(x)sec x dx+int e^(x)sec x tanx dx" …(i)"` Now, `int e^(x)sec x dx` On applying integration by parts, we get `=secx inte^(x) dx-int[(d)/(dx)secx int e^(x)dx]dx` `=e^(x)sec x-int sec x tanx e^(x)dx" ...(ii)"` `l=e^(x) sec x - int e^(x)secx tanx dx+ int sec x tan x e^(x)dx+C` `rArr" "l=e^(x)sec x +C` |
|