1.

Integrate : ∫(ex/x)(1 + x log x) dx, for x ∈ [1,e].

Answer»

∫(ex/x)(1 + x log x) dx = ∫ex((1/x) + log x) dx

= ∫ex(f(x) + f(x).dx

= exf(x) = ex.log x

∴ ∫(ex/x)(1 + x log x) dx, for x ∈ [1,e] = [ex log x], for x ∈ [1,e]

= ee.log ee = e log 

= ee



Discussion

No Comment Found