InterviewSolution
Saved Bookmarks
| 1. |
`intsqrt(2x-5x-1)dx` का मान ज्ञात कीजिए । |
|
Answer» `intsqrt(2x^(2)-5x-1)dx` `=sqrt2 int sqrt(x^(2)-(5)/(2)x-(1)/(2))dx` `=sqrt2 intsqrt((x^(2)-(5)/(2)x+(25)/(16))-((1)/(2)+(25)/(16)))dx` `=sqrt2intsqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))dx` `=sqrt2[(1)/(2)(x-(5)/(4))sqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))-((sqrt(33)//4)^(2))/(2)log|x-(5)/(4)+sqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))|]+c` `=(1)/(sqrt2)(x-(5)/(4))sqrt(x^(2)-(5)/(2)x-(1)/(2))-(33)/(16sqrt2)log|x-(5)/(4)+sqrt(x^(2)-(5x)/(2)-(1)/(2))|+c` `=(1)/(2)(x-(5)/(4))sqrt((2x^(2)-5x-1))-(33)/(16sqrt2)log|x-(5)/(4)+(1)/(sqrt2)sqrt(2x^(2)-5x-1)|+c` |
|