1.

`intsqrt(2x-5x-1)dx` का मान ज्ञात कीजिए ।

Answer» `intsqrt(2x^(2)-5x-1)dx`
`=sqrt2 int sqrt(x^(2)-(5)/(2)x-(1)/(2))dx`
`=sqrt2 intsqrt((x^(2)-(5)/(2)x+(25)/(16))-((1)/(2)+(25)/(16)))dx`
`=sqrt2intsqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))dx`
`=sqrt2[(1)/(2)(x-(5)/(4))sqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))-((sqrt(33)//4)^(2))/(2)log|x-(5)/(4)+sqrt((x-(5)/(4))^(2)-((sqrt(33))/(4))^(2))|]+c`
`=(1)/(sqrt2)(x-(5)/(4))sqrt(x^(2)-(5)/(2)x-(1)/(2))-(33)/(16sqrt2)log|x-(5)/(4)+sqrt(x^(2)-(5x)/(2)-(1)/(2))|+c`
`=(1)/(2)(x-(5)/(4))sqrt((2x^(2)-5x-1))-(33)/(16sqrt2)log|x-(5)/(4)+(1)/(sqrt2)sqrt(2x^(2)-5x-1)|+c`


Discussion

No Comment Found