InterviewSolution
Saved Bookmarks
| 1. |
`intx2^(ln(x^(2)+1))dx` is equal toA. `(2^(ln(x^(2)+1)))/(2(x^(2)+1))+C`B. `(x^(2)+1)2^(ln(x^(2)+1))/(ln2+1)`C. `((x^(2)+1)^(ln2+1))/(2(ln2+1))+C`D. `((x^(2)+1)^(ln2))/(2(ln2+1))+C` |
|
Answer» Correct Answer - C `I=intx2^(ln(x^(2)+1))dx` Let `x^(2)+1=t,rArr xdx=(dt)/(2)` Hence `I=(1)/(2)int2^(lnt)dt` `=(1)/(2)intt^(ln2)dt` `=(1)/(2).(t^(ln2+1))/(ln2+1)+C` `=+(1)/(2).((x^(2)+1)^(ln2+1))/(ln2+1)C` |
|