1.

`intx2^(ln(x^(2)+1))dx` is equal toA. `(2^(ln(x^(2)+1)))/(2(x^(2)+1))+C`B. `(x^(2)+1)2^(ln(x^(2)+1))/(ln2+1)`C. `((x^(2)+1)^(ln2+1))/(2(ln2+1))+C`D. `((x^(2)+1)^(ln2))/(2(ln2+1))+C`

Answer» Correct Answer - C
`I=intx2^(ln(x^(2)+1))dx`
Let `x^(2)+1=t,rArr xdx=(dt)/(2)`
Hence `I=(1)/(2)int2^(lnt)dt`
`=(1)/(2)intt^(ln2)dt`
`=(1)/(2).(t^(ln2+1))/(ln2+1)+C`
`=+(1)/(2).((x^(2)+1)^(ln2+1))/(ln2+1)C`


Discussion

No Comment Found

Related InterviewSolutions