

InterviewSolution
Saved Bookmarks
1. |
It is found that `|A+B|=|A|`,This necessarily implies.A. `vecB=0`B. `vecA,vecB` are antiparallelC. `vecA,vecB` are perpendicularD. `vecA,vecB le0`. |
Answer» Correct Answer - A::B Given that `|A+B|=|A|` or `|A+B|^(2)=|A|^(2)` `=|A|^(2)+|B|^(2)+|A||B|cos theta=|A|^(2)` Where `theta` is angle between `A` and `B`. `=|B|=0` or `|B|+2|A|cos theta=0` `=cos theta =-|B|/(2|A|)` If `A` and `B` are antiparallel, then `theta=180^(@)` Hence, from Eq (i) `-1=-|B|/(2|A|)rArr|B|=2|A|` |
|