1.

ज्ञात करें `sin[(pi)/(2) - sin^(-1)(-(sqrt(3))/(2))]`

Answer» माना कि `sin^(-1)(-(sqrt(3))/(2)) = theta,` तो `theta in[(-pi)/(2),(pi)/(2)]`
साथ ही `sin theta = (-sqrt(3))/(2) = - sin""(pi)/(3) = sin(-(pi)/(3)) rArr = - (pi)/(3) rArr sin ^(-1)((-sqrt(3))/(2)) = - (pi)/(3)`
अब `sin[(pi)/(2) - sin^(-1)((-sqrt(3))/(2))] = sin[(pi)/(2) - ((-pi)/(3))] = sin ""(5pi)/(6) = (1)/(2)`


Discussion

No Comment Found