1.

Kapler law

Answer» Kepler’s third law\xa0of planetary motion is called the ‘law of periods’ According to this law, the square of the time period of a planet is directly proportional to the cube of the semi-major axis of its elliptical orbit. That is, T squared is proportional to R cubed, where T is the time taken by the planet for one rotation and R is the length of the semi-major axis of its elliptical orbit. Kepler’s laws revolutionised the field of astronomy and have helped people understand the configuration and movement of planets better.
Kepler’s second law\xa0of planetary motion is the ‘law of areas’. According to this law, the line joining the sun and a planet, sweeps equal areas in equal intervals of time. Consider a planet revolving around the sun.\xa0Let ‘P1’ and ‘P2’ represent its positions at the start and end of 30-day duration. Let A1\xa0represent the area swept during this period. Similarly, let ‘P3’ and ‘P4’ represent two positions of the planet during its revolution for a 30-day duration represented by A2. According to Kepler’s second law of planetary motion, area A1\xa0equals area A2. The concept of Kepler’s second law can be understood by the fact that the angular momentum of the planet revolving in its orbit remains constant. This is because it is under the influence of a central force.\xa0The force of attraction pulls the planet towards the sun and the magnitude depends on the distance between them. For a body under the action of a central force, the angular momentum, ‘L’, which is the product of ‘mvr,’ remains constant. Where, ‘r’ is the radius vector; ‘v’ is the velocity vector and ‘m’ the mass of the body.\xa0
Kepler’s first law, the ‘law of orbits’, states that all the planets revolve in elliptical orbits with the sun at one of the focii of the ellipse (path of the planets).\xa0Observe the figure of\xa0ellipse. Points F1\xa0and F2\xa0are called the\xa0focii, and ‘O,’ is the centre of the ellipse. For any point ‘P’ on the ellipse, the sum of the lengths PF1\xa0and PF2\xa0is constant. So, as per the first law, the sun is at one of the focii of the ellipse and the planets rotate around it in elliptical orbits. Also the sum of the lengths PF1\xa0and PF2\xa0is always constant.


Discussion

No Comment Found