1.

Lat l_(1)=int_(0)^(3)(sinx)/([(x)/(pi)]+(1)/(2))dx and l_(2)=int_(-3)^(0)(sinx)/([(x)/(pi)]+(1)/(2))dx, then (where[.] represent G.l.F.)

Answer»

`l_(2)+l_(2)=0`
`l_(2)=l_(2)`
`l_(1)=3l_(2)`
`l_(2)=3l_(1)`

Solution :`l_(1)=underset(0)OVERSET(3)(int)(sinx)/([(x)/(pi)]+(1)/(2))DX=underset(0)overset(3)(int)(sinx)/(0+(1)/(2))dx=underset(0)overset(3)(int)2sinx dx`
and `l_(2) =underset(-3)overset(0)(int)(sinx)/([(x)/(pi)]+(1)/(2))dx=underset(-3)overset(0)(int)(sinx)/(-1+(1)/(2))dx=underset(-3)overset(0)(int)-2sinx dx = underset(0)overset(3)(int)2sin x dx""thereforel_(1)=l_(2)`


Discussion

No Comment Found

Related InterviewSolutions