1.

\left. \begin{array} { l } { \text { If } \operatorname { tan } x - \operatorname { tan } ^ { 2 } x = 1 \text { then the value of } } \\ { \operatorname { tan } ^ { 4 } x - 2 \operatorname { tan } ^ { 3 } x - \operatorname { tan } ^ { 2 } x + 2 \operatorname { tan } x + 1 \text { is equal to } } \end{array} \right.

Answer»

tanx-tan^2x=1so tan^2x-tanx+1=0 sk tan^2x-tanx=-1now tan^4x-2tan^3x-tan^2x+2tanx+1=tan^4x-tan^3x-tan^3x-tan^2x+tanx+tanx+1=tan^2x(tan^2x-tanx)-tanx(tan^2x+tanx)+2tanx+1=-tan^2x-tan^3x-tan^2x+2tanx+1=-2tan^2x-tan^3x+2tanx+1=2+2tanx+1=3+2tanx



Discussion

No Comment Found