1.

Len n be an odd integer. If `sinn theta=sum_(r=0)^(n) b_(r)sin^(r)theta` for every value of `theta,` thenA. `b_(0)=1, b_(1)=3`B. `b_(0)=0, b_(1)=n`C. `b_(0)=-1, b_(1)=n`D. `b_(0)=0, b_(1)=n^(2)-3n+3`

Answer» Correct Answer - B
We have,
`sinn theta=underset(r=0)overset(n)(sum)b_(r)sin^(r)theta"for all"theta.`
Putting `theta=0,` we get ` 0=b_(0)`
Again, `sinn theta=underset(r=0)overset(n)(sum)b_(r)sin^(r)theta`
`implies(sinntheta)/(sintheta)=underset(r=0)overset(n)(sum)b_(r)(sintheta)r^(r-1)`
`impliesunderset(6to0)(lim)(sinntheta)/(sintheta)=underset(r=1)overset(n)(sum)b_(r)underset(thetato0)(lim)(sintheta)^(r-1)`
`impliesn =b_(1)`
Hence`,_(0)=0and b_(1)=n`


Discussion

No Comment Found