1.

Let `A={1, 2, 3,..., 9}`and `R`be the relation on `AxxA`defined by `(a , b)R (c , d)`if `a+d=b+c`for all `(a , b), (c , d) in AxxA`. Prove that `R`is an equivalence relation and also obtain theequivalence class `[(2, 5)]`.

Answer» (i) eflexivity
`Let (a,b) in A xxA, then `
` (a,b)in A xxAimplies a,b in A `
`implies a+b=b+a`
`implies (a,b)R(a,b).`
`therefore ` R is reflexive .
(ii) symmetry
Let `(a,b)R(c,d). then `
`(a,b)R(c,d)implies a+d=d+a`
`implies c+b=d+a`
`implies (c,d)R(a,b).`
` therefore ` R is symmetric .
(iii) Transitivity
Let `(a,b) R(c,d) and (c,d) R (e f) . then `
`(a,b) R(c,d)and (c,d) R(e,f)`
`implies a+d =b+c and c+f=d+e`
`implies a+d+c+f=b+c+d+e`
`a+f=b+e`
`implies (a,b)R(e.f).`
`therefore ` R is transitive .,
thus ,R is reflexive , symmetric and transitive .
hence ,R is an equivalence relation .
`[(2,5)={(a,b):(2,5)R(a,b)}`
`={(a,b):2+b=5+a}={(a,b):b-a=3}.`
`={(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)}.`


Discussion

No Comment Found

Related InterviewSolutions