1.

Let α,β,γ be positive integers and logα(3x−5y−z)=logβ(x+8z)=logγ(y−3z−x) (wherever defined). If logαa=2, log2β2b=4, log4γ216c=5(a,b,c>0), then value of (a8)(b4)(c2)is

Answer» Let α,β,γ be positive integers and logα(3x5yz)=logβ(x+8z)=logγ(y3zx) (wherever defined). If logαa=2, log2β2b=4, log4γ216c=5(a,b,c>0), then value of (a8)(b4)(c2)is


Discussion

No Comment Found