

InterviewSolution
Saved Bookmarks
1. |
Let `A` be a square matrix of order `3` so that sum of elements of each row is `1`. Then the sum elements of matrix `A^(2)` isA. `1`B. `3`C. `0`D. `6` |
Answer» Correct Answer - B `(b)` Let `A=[{:(a,b,c),(p,q,r),(x,y,z):}]` Given `{:(a+b+c=1),(p+q+r=1),(x+y+z=1):}` `impliesA^(2)=[{:(a,b,c),(p,q,r),(x,y,z):}][{:(a,b,c),(p,q,r),(x,y,z):}]` `=[{:(a^(2)+bp+cx,,ab+bq+cy,,ac+br+cz),(pa+qp+rx,,qb+q^(2)+ry,,pc+qr+rz),(xa+yp+zx,,xb+yq+zy,,xc+yr+z^(2)):}]` Sum of elements of `R_(1)=a^(2)+bp+cx+ab+bq+cy+ac+br+cz` `=a(a+b+c)+b(p+q+r)+c(x+y+z)` `=a+b+c=0` Similarly sum of elements of `R_(2)=p(a+b+c)+q(p+q+r)+r(x+y+z)` `=p+q+r=1` `R_(3)=x(a+b+c)+y(p+q+r)+z(x+y+z)` `=x+y+z=1` `:.` sum of element of `A^(2)` is `3` |
|