1.

Let `a_(n)` be the `n^(th)` term of the G.P. of positive numbers. Let `sum_(n=1)^(100) a_(2n)=alpha and sum_(n=1)^(100) a_(2n-1)=beta`, such that `a!=beta`, then the common ratio isA. `alpha//beta`B. `beta//alpha`C. `sqrt(alpha//beta)`D. `sqrt(beta//alpha)`

Answer» Correct Answer - A
Let a be the first term and r be the common ratio of the given G.P. Then,
`alpha=underset(n=1)overset(100)suma_(2n)=a_(2)+a_(4)+ . . . +a_(200)=ar^(3)+ . . . .ar^(199)`
`rArr" "alpha=ar(1+r^(2)+r^(4)+ . . .+r^(198))`
`and,beta=underset(n=1)overset(100)suma_(2n-1)=a_(1)+a_(3)+ . . .+a_(199)=a+ar^(2)+ . . .ar^(198)`
`rArr" "beta=a(1+r^(2)+ . . .+r^(198))`
Clearly, `alpha//beta=r`.


Discussion

No Comment Found

Related InterviewSolutions