

InterviewSolution
Saved Bookmarks
1. |
Let `a_(n)` be the `n^(th)` term of the G.P. of positive numbers. Let `sum_(n=1)^(100) a_(2n)=alpha and sum_(n=1)^(100) a_(2n-1)=beta`, such that `a!=beta`, then the common ratio isA. `alpha//beta`B. `beta//alpha`C. `sqrt(alpha//beta)`D. `sqrt(beta//alpha)` |
Answer» Correct Answer - A Let a be the first term and r be the common ratio of the given G.P. Then, `alpha=underset(n=1)overset(100)suma_(2n)=a_(2)+a_(4)+ . . . +a_(200)=ar^(3)+ . . . .ar^(199)` `rArr" "alpha=ar(1+r^(2)+r^(4)+ . . .+r^(198))` `and,beta=underset(n=1)overset(100)suma_(2n-1)=a_(1)+a_(3)+ . . .+a_(199)=a+ar^(2)+ . . .ar^(198)` `rArr" "beta=a(1+r^(2)+ . . .+r^(198))` Clearly, `alpha//beta=r`. |
|