1.

Let `a_(n)` be the nth term of an AP, if `sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta`, then the common difference of the AP isA. `(alpha-beta)/(200)`B. `alpha-beta`C. `(alpha-beta)/(100)`D. `beta-alpha`

Answer» Correct Answer - C
Given, `a_(2)+a_(4)+a_(6)+"......."+a_(200)=alpha" " "....(i)"`
and `a_(1)+a_(3)+a_(5)+"......."+a_(199)=beta" " "....(ii)"`
On subtracting Eq. (ii) from Eq. (i), we get
`(a_(2)-a_(1))+(a_(4)-a_(3))+(a_(6)-a_(5))+"......."+(a_(200)-a_(199))=alpha-beta`
`implies d+d+d+"....."+d=alpha-beta implies 100d=alpha-beta`
`:. d=((alpha-beta))/(100)`.


Discussion

No Comment Found

Related InterviewSolutions