

InterviewSolution
Saved Bookmarks
1. |
Let `a_(n)` be the nth term of an AP, if `sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta`, then the common difference of the AP isA. `(alpha-beta)/(200)`B. `alpha-beta`C. `(alpha-beta)/(100)`D. `beta-alpha` |
Answer» Correct Answer - C Given, `a_(2)+a_(4)+a_(6)+"......."+a_(200)=alpha" " "....(i)"` and `a_(1)+a_(3)+a_(5)+"......."+a_(199)=beta" " "....(ii)"` On subtracting Eq. (ii) from Eq. (i), we get `(a_(2)-a_(1))+(a_(4)-a_(3))+(a_(6)-a_(5))+"......."+(a_(200)-a_(199))=alpha-beta` `implies d+d+d+"....."+d=alpha-beta implies 100d=alpha-beta` `:. d=((alpha-beta))/(100)`. |
|