1.

Let ABCD be a parallelogram whose equations for the diagonals AC and BD are x+2y=3 and 2x+y=3, respectively. The length of side AB is equal to

Answer» <html><body><p>`2sqrt(<a href="https://interviewquestions.tuteehub.com/tag/58-325922" style="font-weight:bold;" target="_blank" title="Click to know more about 58">58</a>)//<a href="https://interviewquestions.tuteehub.com/tag/3-301577" style="font-weight:bold;" target="_blank" title="Click to know more about 3">3</a>`<br/>`4sqrt(58)//9`<br/>`3sqrt(58)//9`<br/>`4sqrt(58)//9`</p>Solution :`"cos" (pi-theta) = (<a href="https://interviewquestions.tuteehub.com/tag/ap-380277" style="font-weight:bold;" target="_blank" title="Click to know more about AP">AP</a>^(<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>) + <a href="https://interviewquestions.tuteehub.com/tag/pb-597752" style="font-weight:bold;" target="_blank" title="Click to know more about PB">PB</a>^(2)-AB^(2))/(2AP xx PB)` <br/> `"or " -(4)/(5) = (4+(100//9)-AB^(2))/(2 xx 2 xx (10//3))` <br/> `"or " AB = (2sqrt(58))/(3)`</body></html>


Discussion

No Comment Found

Related InterviewSolutions