| 1. |
Let ‘*’ be a binary operation on N defined by a*b = L.C.M(a,b) for all a,b∈N. Check the commutativity and associativity of ‘*’ on N. |
|
Answer» We know that commutative property is p*q = q*p, where * is a binary operation. Let’s check the commutativity of given binary operation: ⇒ a*b = L.C.M(a,b) ⇒ b*a = L.C.M(b,a) = L.C.M(a,b) ⇒ b*a = a*b ∴ Commutative property holds for given binary operation ‘*’ on ‘N’. We know that associative property is (p*q)*r = p*(q*r) Let’s check the associativity of given binary operation: ⇒ (a*b)*c = (L.C.M(a,b))*c ⇒ (a*b)*c = L.C.M(a,b)*c ⇒ (a*b)*c = L.C.M(L.C.M(a,b),c) ⇒ (a*b)*c = L.C.M(a,b,c) ...... (1) ⇒ a*(b*c) = a*(L.C.M(b,c)) ⇒ a*(b*c) = a*L.C.M(b,c) ⇒ a*(b*c) = L.C.M(a,L.C.M(b,c)) ⇒ a*(b*c) = L.C.M(a,b,c) ...... (2) From(1) and (2) we can say that associative property holds for binary function ‘*’ on ‘N’ |
|