1.

Let ΔABC be a triangle such that ∠B = 70° and∠C = 40° . suppose D is a point on BC such that AB = AD. Prove that AB > CD.

Answer»

In Δ ABD, AB = AD 

∴∠ABD = ∠ APB = 70° 

∠APB +∠ ADC = 180° [Linear pair] 

70° +∠ADC = 180° 

∠ADC = 180° – 70° 

∠ADC = 110° 

In Δ ADC, 

∠DAC = 180° – ( 110° + 40°) 

= 180°-150 °

∠DAC = 30° 

In Δ ADC, 

∠ACD ∠DAC 

AD > CD 

but AB = AD 

∴ AB > CD



Discussion

No Comment Found