1.

Let `E_1a n dE_2,`respectively, be two ellipses `(x^2)/(a^2)+y^2=1,a n dx^2+(y^2)/(a^2)=1`(where `a`is a parameter). Then the locus of the points of intersection of theellipses `E_1a n dE_2`is a set of curves comprisingtwo straight lines(b) one straight lineone circle(d) one parabolaA. two straigthsB. one straiths lineC. one circleD. one parabola

Answer» Let P(h,k) be the point of intersection of `E_(1) and E_(2)`. Then ,
`(h^(2))/(a^(2))+k^(2)=1`
or `h^(2)=a^(2)(1-k^(2)) " "(1)`
and `(h^(2))/(1)+(k^(2))/(a^(2))=1`
`or k^(2)=a^(2)(1-h^(2))" "(2)`
Eliminating from (1) and (2), we get
`(h^(2))/(1-k^(2))=(k^(2))/(1-h^(2))`
or `h^(2)(1-h^(2)=k^(2)(1-k^(2))`
or `(h-k)(h+k)(h^(2)+k^(2)-1)=0`
Hence, hte locus os a set of curves consisting of the straight lines y=x,y=-x, and the cirlce`x^(2)+y^(2)=1`


Discussion

No Comment Found

Related InterviewSolutions