InterviewSolution
Saved Bookmarks
| 1. |
Let `f:[0,1] rarr R` be such that `f(xy)=f(x).f(y),` for all `x,y in [0,1]` and `f(0) ne 0.` If `y=y(x)` satisfies the differential equation, `dy/dx=f(x)` with `y(0)=1,` then `y(1/4)+y(3/4)` is equql to(A)`5 `(B) `3`(C) `2`(D) `4`A. (a) 5B. (b) 3C. (c) 2D. (d) 4 |
|
Answer» Correct Answer - (b) Given , `f(xy)=f(x)cdot f(y),AAx,yin[0,1] …(i)` Putting `x = y = 0` in Eq. (i), we get `f(0) = f(0)cdot f(0)` `rArr f(0)[f(0)-1]=0` `rArr f(0)=1as f(0)ne 0` Now, put y=0 in Eq. (i) , we get `f(0)=f(x)cdot f(0)` `rArr f(x)=1` so, `dy/dx=f(x)rArr dy/dx=1` `rArr int dy=intdx` `rArr y=x+ C` `therefore y(0)=1` `therefore 1=0+C` `rArr C=1` `therefore y=x+1` Now, `y(1/4)=1/4+1 =5/4 and y(3/4)=3/4+1=7/4` `rArr y(1/4)+y(3/4)=5/4+7/4=3` |
|