InterviewSolution
Saved Bookmarks
| 1. |
Let f be the exponential function and g be the logarithumic function. Then, find (i) (f+g)(1) (ii) (fg)(1) (iii) (4f)(1) (iv) (3g)(1) |
|
Answer» Let `f:RtoR:f(x)=e^(x)andg:R^(+)toR:g(x)=log_(e)x`. Then, dom `(f)nn"dom "(g)=RnnR^(+)=R^(+)`. (i) `(f+g):R^(+)toR` is given by `(f+g)(x)=f(x)+g(x)=(e^(x)+log_(e)x)`. `:.(f+g)(1)=(e^(1)+log_(e)1)=(e+0)=e`. (ii) `(fg):R^(+)toR` is given by `(fg)(x)=f(x).g(x)=e^(x)(log_(e)x)`. `:.(fg)(1)=e^(1)(log_(1)1)=(exx0)=0`. (iii) `(4f):R^(+)toR` is given by `(4f)(x)=4xxf(x)=4e^(x)`. `:.(4f)(1)=(4xxe^(1))=4e^(x)`. (iv) `(3g):R^(+)toR` is given by `(3g)(x)=3xxg(x)=3xx(log_(e)x)`. `:.(3g)(1)=3xxg(1)=3xx(log_(e)1)=(3xx0)=0`. |
|