InterviewSolution
Saved Bookmarks
| 1. |
Let f, g, and h be functions from R to R. Show that (f cdot g) o h = (foh) cdot (goh) |
|
Answer» Solution :`[ (F cdot G) o H] (x) = (f cdot g) (h (x))` `= f(h(x)) cdot g(h (x))` `(f o h)(x) cdot (g o h)(x)` `=[(foh) cdot (goh)](x)`, for all `x in R` Thus, `(f cdot g)` o h = (foh) `cdot` (goh) |
|