1.

Let f, g, and h be functions from R to R. Show that (f cdot g) o h = (foh) cdot (goh)

Answer»

Solution :`[ (F cdot G) o H] (x) = (f cdot g) (h (x))`
`= f(h(x)) cdot g(h (x))`
`(f o h)(x) cdot (g o h)(x)`
`=[(foh) cdot (goh)](x)`, for all `x in R`
Thus, `(f cdot g)` o h = (foh) `cdot` (goh)


Discussion

No Comment Found

Related InterviewSolutions