1.

Let f: R → R be a function defined by f (x) = \(\frac{x-m}{x-n}\) , when m ≠ n, then(a) f is one-one onto (b) f is many-one onto (c) f is one-one into (d) f is many-one into

Answer»

Answer: (c) = f is one - one into 

 ∀ (x, y) ∈ R, f (x) = f (y) 

⇒ \(\frac{x-m}{x-n}\) = \(\frac{y-m}{y-n}\) 

⇒ (x – m) (y – n) = (y – m) (x – n) 

⇒ xy – my – nx + mn = yx – mx – ny + mn 

⇒ mx – nx = my – ny 

⇒ (m – n) x = (m – n) y 

⇒ x = y 

⇒ f is one-one.

Let z = f (x) = \(\frac{x-m}{x-n}\)  

⇒ zx – zn = x – m 

⇒ zx – x = zn – m 

⇒ x (z – 1) = zn – m

⇒ x = \(\frac{zn-m}{z-1} = \frac{m-zn}{1-z}\)  

x is not defined for z = 1 

⇒ for z = 1, there exists no pre-image in R 

⇒ f is not onto. 

∴  f is one-one, into function.



Discussion

No Comment Found