InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R : f(x) (2x - 3) and \(g:R→R:g(x)=\frac{1}{2}(x+3)\). Show that (f o g) = IR = (g o f). |
|
Answer» To prove: (f o g) = IR = (g o f). Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : R → R : f(x) = (2x - 3) (ii) \(g:R→R:g(x)=\frac{1}{2}(x+3)\) Solution: We have, f o g = f(g(x)) \(=f(\frac{1}{2}(x+3))\) \(=[2(\frac{1}{2}(x+3))-3]\) = x + 3 – 3 = x = IR g o f = g(f(x)) = g(2x - 3) \(=\frac{1}{2}(2x-3+3)\) \(=\frac{1}{2}(2x)\) = x = IR Clearly we can see that (f o g) = IR = (g o f) = x Hence Proved. |
|