1.

Let f : R → R : f(x) (2x - 3) and \(g:R→R:g(x)=\frac{1}{2}(x+3)\). Show that (f o g) = IR = (g o f).

Answer»

To prove: (f o g) = IR = (g o f).

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f : R → R : f(x) = (2x - 3)

(ii) \(g:R→R:g(x)=\frac{1}{2}(x+3)\)

Solution: We have,

f o g = f(g(x))

\(=f(\frac{1}{2}(x+3))\)

\(=[2(\frac{1}{2}(x+3))-3]\)

= x + 3 – 3

= x

= IR

g o f = g(f(x))

= g(2x - 3)

\(=\frac{1}{2}(2x-3+3)\)

\(=\frac{1}{2}(2x)\)

= x

= IR

Clearly we can see that (f o g) = IR = (g o f) = x

Hence Proved.



Discussion

No Comment Found