InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R : f(x) = x2 + 2 and \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\)find f o g and g o f and hence find (f o g) (2) and (g o f) (-3). |
|
Answer» To find: f o g, g o f ,(f o g) (2) and (g o f) (-3) Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : R → R : f(x) = x2 + 2 (ii) \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\) f o g = f(g(x)) \(\Rightarrow f(\frac{x}{x-1})\) \(\Rightarrow (\frac{x}{x-1})^2+2\) \(\Rightarrow\frac{(x)^2}{(x-1)^2}+2\) \(fog(2)=\frac{(2)^2}{(2-1)^2}+2\) \(=\frac{4}{1}+2\) = 6 g o f = g(f(x)) ⇒ g(x2+2) \(\Rightarrow \frac{x^2+2}{x^2+2-1}\) \(\Rightarrow \frac{x^2+2}{x^2+1}\) \((gof)(-3)=\frac{-3^2+2}{-3^2+1}\) \(=\frac{9+2}{9+1}\) \(=\frac{11}{10}\) |
|