1.

Let f : R → R : f(x) = x2 and g : R → R : g(x) = (x + 1). Show that (g o f) ≠ (f o g).

Answer»

To prove: (g o f) ≠ (f o g)

Formula used: (i) g o f = g(f(x))

(ii) f o g = f(g(x))

Given: (i) f : R → R : f(x) = x2

(ii) g : R → R : g(x) = (x + 1)

Proof: We have,

g o f = g(f(x)) = g(x2) = ( x2 + 1 )

f o g = f(g(x)) = g(x+1) = [ (x+1)2 + 1 ] = x2 + 2x + 2

From the above two equation we can say that (g o f) ≠ (f o g)

Hence Proved



Discussion

No Comment Found