InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R : f(x) = x2 and g : R → R : g(x) = (x + 1). Show that (g o f) ≠ (f o g). |
|
Answer» To prove: (g o f) ≠ (f o g) Formula used: (i) g o f = g(f(x)) (ii) f o g = f(g(x)) Given: (i) f : R → R : f(x) = x2 (ii) g : R → R : g(x) = (x + 1) Proof: We have, g o f = g(f(x)) = g(x2) = ( x2 + 1 ) f o g = f(g(x)) = g(x+1) = [ (x+1)2 + 1 ] = x2 + 2x + 2 From the above two equation we can say that (g o f) ≠ (f o g) Hence Proved |
|