1.

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt. y=f(x) is

Answer»

injective but not surjective
surjective but not injective
bijective
neither injective nor surjective

Solution :`f(x)=x^(2)+int_(0)^(x)e^(-t)(x-t)dt`………….1
`x^(2)+int_(0)^(x)e^(-x-t)f(x-(x-t))dt`
[Using `int_(a)^(b)f(x)DX=int_(a)^(b)f(a+b-x)dx`]
`=x^(2)+e^(-x)int_(0)^(x)e^(t)f(t)dt`……………..2
Differentiating w.R.t.`x` we get
`f'(x)=2x-e^(-x)int_(0)^(x)e^(t)f(t)dt+e^(-x)e^(x)f(x)`
`=2x-e^(-x)int_(0)^(x)e^(t)f(t)dt+f(x)`
`=2x+x^(2)` [using equation 2]
`:. f(x)=(x^(3))/3+x^(2)+c`
Also `f(0)=0` [from equation 1]
or `f(x)=(x^(3))/3+x^(2)`
or `f'(x)=x^(2)+2x`
Thus `f'(x)=` has real roots. Hence `f(x)` is non monotonic.
Hence `f(x)` is many one but range is `R` and hence, is surjective
`int_(0)^(1)f(x)dx=int_(0)^(1)((x^(3))/3+x^(2))dx`
`=[(x^(4))/12+(x^(3))/3]_(0)^(1)`
`=1/12+1/3`
`=5/12`


Discussion

No Comment Found

Related InterviewSolutions