InterviewSolution
Saved Bookmarks
| 1. |
Let ` f(x) = {{:({1+|sin x|}^(a//|sin x|)", " pi/6 lt x lt 0),(" b, " x = 0 ),(e^(tan 2x//tan 3x) ", "0ltx ltpi/6):}` Determine a and b such that f(x) is continous at x = 0.A. `3//2,^(3//2)`B. `-2//3,e^(-3//2)`C. `2//3,e^(2//3)`D. None of these |
|
Answer» Correct Answer - C We have, `underset(x to 0^(-))limf(x)` `=underset(c to 0)lim{1+|sinx|}^((a)/(|sin x|))` `=e^(underset(x to 0)lim|sinx|.(a)/(|sin x|))=e^(a)` and `underset(xto0^(-))limf(x)=underset(xto0)lime^((tan 2x)/(tan3x))` `e^(underset(xto0)lim(tan 2x)/(2x)(3x)/(tan3x)xx2/3)` `e^(2//3)` For f (x) to be continous at x=0, we must have `underset(x to 0^(-))limf(x)=underset(xto0^(+))limf(x)` `=f(0)` `impliese^(a)=e^(2//3)=b` `implies a=2//3` and ` b=e^(2//3)` |
|