InterviewSolution
| 1. |
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe i. f + g ii. f – g iii. fgiv. \(\frac{f}{g}\)Find the domain in each case. |
|
Answer» Given, f(x) = 2x + 5 and g(x) = x2 + x Clearly, Both f(x) and g(x) are defined for all x ∈ R. Hence, Domain of f = domain of g = R i. f + g We know, (f + g)(x) = f(x) + g(x) ⇒ (f + g)(x) = 2x + 5 + x2 + x ∴ (f + g)(x) = x2 + 3x + 5 Clearly, (f + g)(x) is defined for all real numbers x. ∴ The domain of (f + g) is R ii. f – g We know, (f – g)(x) = f(x) – g(x) ⇒ (f – g)(x) = 2x + 5 – (x2 + x) ⇒ (f – g)(x) = 2x + 5 – x2 – x ∴ (f – g)(x) = 5 + x – x2 Clearly, (f – g)(x) is defined for all real numbers x. ∴ The domain of (f – g) is R iii. fg We know, (fg)(x) = f(x)g(x) ⇒ (fg)(x) = (2x + 5)(x2 + x) ⇒ (fg)(x) = 2x(x2 + x) + 5(x2 + x) ⇒ (fg)(x) = 2x3 + 2x2 + 5x2 + 5x ∴ (fg)(x) = 2x3 + 7x2 + 5x Clearly, (fg)(x) is defined for all real numbers x. ∴ The domain of fg is R iv. \(\frac{f}{g}\) We know, (\(\frac{f}{g}\))(x) = \(\frac{f(x)}{g(x)}\) ∴ (\(\frac{f}{g}\))(x) = \(\frac{2x+5}{x^2+x}\) Clearly, (\(\frac{f}{g}\))(x) is defined for all real values of x, except for the case when x2 + x = 0. x2 + x = 0 ⇒ x(x + 1) = 0 ⇒ x = 0 or x + 1 = 0 ⇒ x = 0 or –1 When x = 0 or –1,(\(\frac{f}{g}\))(x) will be undefined as the division result will be indeterminate. Thus, Domain of \(\frac{f}{g}\) = R – {–1, 0} |
|