1.

Let f(x)=(ax^2+bx+c)/(x^2+1) such that y=-2 is an asymptote of the curve y=f(x). The curve y=f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x)=f(x)-g(x),where f(x)=sin^4 pi x and g(x)=log_(e)x. Let x_(0),x_(1),x_(2)...x_(n+1) be the roots of f(x)=g(x) in increasing order Then, the absolute area enclosed by y=f(x) and y=g(x) is given by

Answer»

`sum_(r=0)^n int_(x_r)^(x_(r+1))(-1)^rcdoth(x)DX`
`sum_(r=0)^n int_(x_1)^(x_(r+1))(-1)^(r+1)CDOT h(x)dx`
`2sum_(r=0)^n int_(x_r)^(x_(r__r+1))(-1)^rcdoth(x)dx`
`1/2 cdot sum_(r=0)^n int_(x_1)^(x_(r+1))(-1)^(r+1)cdot h(x)dx`

ANSWER :A


Discussion

No Comment Found

Related InterviewSolutions