1.

Let `f(x)=x^2a n dg(x)=sinxfora l lx in Rdot`Then the set of all `x`satisfying `(fogogof)(x)=(gogof)(x),w h e r e(fog)(x)=f(g(x)),`is`+-sqrt(npi),n in {0,1,2, dot}``+-sqrt(npi),n in {1,2, dot}``pi/2+2npi,n in { ,-2,-1,0,1,2}``2npi,n in { ,-2,-1,0,1,2, }`A. `pm sqrt(n pi), n in {0,1,2, …..}`B. `pm sqrt(n pi), n in {1,2,…}`C. `pi//2+2n pi, n in {…, -2,-1,0,1,2, …}`D. `2n pi, n in {…, -2,-1,0,1,2, … }`

Answer» Correct Answer - B
`f(x)=x^(2),g(x)=sinx`
`(gof)(x)=sin x^(2)`
`go(gof)(x)=sin(sinx^(2))`
`(fogogof)(x)=(sin(sin x^(2)))^(2) " …(i)" `
Again, `(gof)(x)=sin x^(2)`
`(gogof)(x)=sin(sin x^(2)) " …(ii)" `
Given, `(fogogof) (x)=(gogof)(x)`
`rArr (sin(sin^(2)))^(2)=sin(sin x^(2))`
`rArr sin(sin x^(2)) {sin (sin x^(2))-1}=0`
`implies sin(sin x^(2) )=0 or sin(sin x^(2))=1`
`rArr sin x^(2)=0 or sin x^(2)=(pi)/(2)`
` therefore x^(2) = n pi `
`[ sin x^(2)=(pi)/(2) " is not possible as " -1 le sin theta le 1]`
` x =pm sqrt(n pi)`


Discussion

No Comment Found