1.

Let `f(x)=[x]+[-x]`, where `[x]` denotes the greastest integer less than or equal to x . Then, for any integer mA. `lim_(xtom) f(x)=f(m)`B. `lim_(xtom)f(x)ne f(m)`C. `lim_(xtom)f(x)` does not existD. none of these

Answer» Correct Answer - B
We have
` f(x)=[x]+[-x]`
`rArr f(x)={([x]-[x]=0,"if x is an integer",),([x]+(-[x]-1)=-1,"if x is not an integer",):}`
` therefore lim_(xotm^-)f(x)=lim_(xtom^+)f(x)=-1and , f(m)=0`.
Hence, `lim_(xtom^-)f(x)ne f(m)`.


Discussion

No Comment Found