

InterviewSolution
Saved Bookmarks
1. |
Let `f(x0=|x-1|dot`Then`f(x^2)=(f(x))^2`(b) `f(x+y)=f(x)+f(y)``f(|x|)-|f(x)|`(d) none of theseA. `f(x^(2))={f(x)}^(2)`B. `f(x+y)=f(x)+f(y)`C. `f(|x|)=|f(x)|`D. None of the above |
Answer» Correct Answer - D Given, `f(x)=|x-1|` ` therefore f(x^(2))=|x^(2)-1|` `and {f(x)}^(2)=(x-1)^(2)` `rArr f(x^(2)) ne (f(x))^(2)`, hence (a) is false. Also, `f(x+y)=|x+y-1|` ` and f(x)=|x-1|`, `f(y)=|y-1|` `rArr f(x+y) ne f(x) +f(y),` hence (b) is false. `f(|x|)=||x|-1|` ` and |f(x) |=||x-1||=|x-1|` ` therefore f(|x|) ne |f(x)|,` hence (c) is false. |
|