

InterviewSolution
Saved Bookmarks
1. |
Let `g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0.`then the value of `8g(pi/2)`is __________ |
Answer» Correct Answer - 0.5 `g(x)=int(cosx(cosx+2)+sin^(2)x)/((cosx+2)^(2))dx` `=int underset(II)(underbrace(cosx))*(1)/(underset(I)(underbrace((cosx+2))))dx+int(sin^(2)x)/((cosx+2)^(2))dx` `=(1)/(cosx+2)*sinx-int(sin^(2)x)/((cosx+2)^(2))dx+int(sin^(2))/((cosx+2)^(2))dx` `:. g(x)=(sinx)/(cosx+2)+C` `g(0)=0 " or " C=0` `:. g(x)=(sinx)/(cosx+2) " or " g((pi)/(2))=(1)/(2)` |
|